External Resources
==================
JAX and Graph Learning Resources
--------------------------------
* **JAX Documentation**: Official JAX documentation [`Website `__]
* **JAX Tutorials**: Comprehensive JAX learning materials [`Website `__]
* **Flax NNX Guide**: Modern neural networks with Flax [`Documentation `__]
Graph Machine Learning
----------------------
* **Stanford CS224W**: Machine Learning with Graphs lectures [`YouTube `__]
* **Graph Neural Networks**: Comprehensive introduction [`Distill.pub `__]
* **Geometric Deep Learning**: Theoretical foundations [`Website `__]
PyTorch Geometric Integration
-----------------------------
Since **JraphX** can work with PyTorch Geometric datasets:
* **PyTorch Geometric**: Original library for graph neural networks [`Website `__, `GitHub `__]
* **PyG Datasets**: Comprehensive collection of graph datasets [`Documentation `__]
* **Graph learning datasets**: Curated collection [`TUDatasets `__]
JAX Ecosystem
-------------
* **JAX AI Stack** [`GitHub `__]
Related Libraries
-----------------
* **Jraph**: DeepMind's archived graph neural network library [`GitHub (archived) `__]
* **JAX-MD**: Molecular dynamics with JAX [`GitHub `__]
* **Graph Nets**: DeepMind's graph networks library [`GitHub `__] in TensorFlow/Sonnet
Contributing
------------
**JraphX** is an open-source project. Contributions are welcome!
* **Issues**: Report bugs or request features
* **Pull Requests**: Contribute code improvements
* **Documentation**: Help improve these docs
* **Examples**: Share your JraphX applications