External Resources ================== JAX and Graph Learning Resources -------------------------------- * **JAX Documentation**: Official JAX documentation [`Website `__] * **JAX Tutorials**: Comprehensive JAX learning materials [`Website `__] * **Flax NNX Guide**: Modern neural networks with Flax [`Documentation `__] Graph Machine Learning ---------------------- * **Stanford CS224W**: Machine Learning with Graphs lectures [`YouTube `__] * **Graph Neural Networks**: Comprehensive introduction [`Distill.pub `__] * **Geometric Deep Learning**: Theoretical foundations [`Website `__] PyTorch Geometric Integration ----------------------------- Since **JraphX** can work with PyTorch Geometric datasets: * **PyTorch Geometric**: Original library for graph neural networks [`Website `__, `GitHub `__] * **PyG Datasets**: Comprehensive collection of graph datasets [`Documentation `__] * **Graph learning datasets**: Curated collection [`TUDatasets `__] JAX Ecosystem ------------- * **JAX AI Stack** [`GitHub `__] Related Libraries ----------------- * **Jraph**: DeepMind's archived graph neural network library [`GitHub (archived) `__] * **JAX-MD**: Molecular dynamics with JAX [`GitHub `__] * **Graph Nets**: DeepMind's graph networks library [`GitHub `__] in TensorFlow/Sonnet Contributing ------------ **JraphX** is an open-source project. Contributions are welcome! * **Issues**: Report bugs or request features * **Pull Requests**: Contribute code improvements * **Documentation**: Help improve these docs * **Examples**: Share your JraphX applications