JAX Compilation and XLA

JAX can automatically compile your JraphX code to optimized XLA (Accelerated Linear Algebra) programs, providing significant performance improvements.

XLA Compilation Benefits

XLA compilation in JAX provides several advantages for JraphX models:

  • Automatic optimization: XLA optimizes the entire computation graph

  • Cross-platform: Support for CPU, GPU, and TPU

  • Operator fusion: Combines multiple operations for better memory usage

  • Vectorization: Automatic SIMD optimization

import jax
import jax.numpy as jnp
from jraphx.nn.models import GCN
from flax import nnx

# Create model - XLA will optimize this automatically when JIT-compiled
model = GCN(
    in_features=64,
    hidden_features=128,
    out_features=32,
    num_layers=4,
    rngs=nnx.Rngs(42)
)

# JIT compilation triggers XLA optimization
@nnx.jit
def optimized_forward(model, x, edge_index):
    return model(x, edge_index)

# XLA optimizes the entire computation graph
x = jnp.ones((1000, 64))
edge_index = jnp.array([[0, 1, 2], [1, 2, 0]])
output = optimized_forward(model, x, edge_index)

Compilation vs. Eager Mode

JraphX models can run in both eager mode (for debugging) and compiled mode (for production):

# Eager mode - good for debugging
def debug_model(model, x, edge_index):
    print(f"Input shape: {x.shape}")
    output = model(x, edge_index)
    print(f"Output shape: {output.shape}")
    return output

# Compiled mode - good for production
@nnx.jit
def production_model(model, x, edge_index):
    return model(x, edge_index)

# Use debug mode during development
debug_output = debug_model(model, x, edge_index)

# Switch to compiled mode for performance
prod_output = production_model(model, x, edge_index)

Debugging Compiled Code

When debugging JIT-compiled JraphX models, you can:

  1. Disable JIT temporarily:

with jax.disable_jit():
    output = optimized_forward(model, x, edge_index)  # Runs in eager mode
  1. Use JAX debugging tools:

# Print intermediate values (only works in eager mode)
def debug_forward(model, x, edge_index):
    x = model.layers[0](x, edge_index)
    jax.debug.print("After layer 0: {}", x.shape)
    x = model.layers[1](x, edge_index)
    jax.debug.print("After layer 1: {}", x.shape)
    return x
  1. Check compilation status:

# See the compiled computation graph
compiled_fn = jax.jit(production_model)
print(compiled_fn.lower(model, x, edge_index).compile().as_text())

Performance Comparison

Here’s how JraphX with JAX compilation compares to other approaches:

import time
import jax

# Measure compilation overhead (one-time cost)
start = time.time()
jit_fn = jax.jit(lambda m, x, e: m(x, e))
_ = jit_fn(model, x, edge_index)  # Compilation happens here
compile_time = time.time() - start
print(f"Compilation time: {compile_time:.2f}s")

# Measure runtime performance
start = time.time()
for _ in range(100):
    _ = model(x, edge_index).block_until_ready()  # Eager mode
eager_time = time.time() - start

start = time.time()
for _ in range(100):
    _ = jit_fn(model, x, edge_index).block_until_ready()  # Compiled mode
jit_time = time.time() - start

print(f"Eager mode: {eager_time:.3f}s")
print(f"JIT mode: {jit_time:.3f}s")
print(f"Speedup: {eager_time / jit_time:.2f}x")

For more information on JAX compilation and XLA, see the JAX compilation guide.