librosax.layers.Spectrogram¶
- class Spectrogram(*args: Any, **kwargs: Any)[source]¶
A module that computes a spectrogram from a waveform using JAX.
This module transforms audio time-domain signals into time-frequency representation.
- Variables:
n_fft – FFT size. Default is 2048.
hop_length – Step between successive frames. Default is
n_fft // 4.win_length – Window size. Default is
n_fft.window – Window function type. Default is
"hann".center – If
True, the waveform is padded so that frames are centered. Default isTrue.pad_mode – Padding mode for the waveform. Default is
"reflect".power – Exponent for the magnitude (2.0 means power spectrogram). Default is 2.0.
freeze_parameters – If
True, parameters are not updated during training. Default isTrue.
- __init__(n_fft: int = 2048, hop_length: int = None, win_length: int = None, window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', power: float = 2.0, freeze_parameters: bool = True)[source]¶
Methods
__init__([n_fft, hop_length, win_length, ...])eval(**attributes)Sets the Module to evaluation mode.
iter_children()Iterates over all children
Module's of the current Module.iter_modules()Recursively iterates over all nested
Module's of the current Module, including the current Module.perturb(name, value[, variable_type])Add an zero-value variable ("perturbation") to the intermediate value.
set_attributes(*filters[, raise_if_not_found])Sets the attributes of nested Modules including the current Module.
sow(variable_type, name, value[, reduce_fn, ...])sow()can be used to collect intermediate values without the overhead of explicitly passing a container through each Module call.train(**attributes)Sets the Module to training mode.