librosax.layers.MFCC¶
- class MFCC(*args: Any, **kwargs: Any)[source]¶
A module that computes Mel-Frequency Cepstral Coefficients (MFCCs).
This module extends LogMelFilterBank to compute MFCCs by applying a Discrete Cosine Transform (DCT) to the log-mel spectrogram.
- Variables:
n_mfcc – Number of MFCCs to return. Default is 20.
dct_type – Type of DCT (1-4). Default is 2.
norm – Normalization mode for DCT. Default is “ortho”.
lifter – Liftering coefficient. 0 means no liftering. Default is 0.
is_log – If
True, convert to log scale (must beTruefor MFCCs). Default isTrue.LogMelFilterBank. (Inherits all attributes from)
- __init__(sr: int = 22050, n_fft: int = 2048, n_mels: int = 64, fmin: float = 0.0, fmax: float = None, ref: float = 1.0, amin: float = 1e-10, top_db: float | None = 80.0, freeze_parameters: bool = True, n_mfcc: int = 20, dct_type: int = 2, norm: str = 'ortho', lifter: int = 0)[source]¶
Methods
__init__([sr, n_fft, n_mels, fmin, fmax, ...])eval(**attributes)Sets the Module to evaluation mode.
iter_children()Iterates over all children
Module's of the current Module.iter_modules()Recursively iterates over all nested
Module's of the current Module, including the current Module.perturb(name, value[, variable_type])Add an zero-value variable ("perturbation") to the intermediate value.
set_attributes(*filters[, raise_if_not_found])Sets the attributes of nested Modules including the current Module.
sow(variable_type, name, value[, reduce_fn, ...])sow()can be used to collect intermediate values without the overhead of explicitly passing a container through each Module call.train(**attributes)Sets the Module to training mode.